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SUMMARY: 
Performance-based earthquake engineering (PBEE) is emerging as the next-generation design and evaluation 
framework under which new and existing structures will be analyzed for seismic adequacy.  This paper pre-
sents the application of the PBEE methodology developed at the Pacific Earthquake Engineering Research 
(PEER) Center to the Humboldt Bay Middle Channel (HBMC) Bridge modeled and analyzed as a nonlinear 
soil-foundation-structure interaction (SFSI) system.  The HBMCB, with precast and prestressed concrete I-
girders and cast-in-place concrete slabs, is fairly representative of older AASHTO-Caltrans girder bridges.  It 
is supported on pile groups in soils potentially vulnerable to liquefaction during an earthquake, which could
induce lateral spreading and permanent soil deformations. 
This paper presents the nonlinear finite element model of the bridge-foundation-ground (BFG) system used in 
this study and then focuses on the several analytical steps of the PEER PBEE methodology as applied to this 
bridge.  This methodology integrates in a probabilistic framework seismic hazard analysis, seismic demand
analysis, capacity analysis, reliability/damage analysis, and loss analysis.  Several potential failure mecha-
nisms of the HBMC Bridge are considered: flexural failure of bridge piers, failure of shear key(s), and unseat-
ing. For each failure mechanism, several limit/damage-states measuring the stage of formation of the mecha-
nism are defined.  The seismic reliability against these limit-states is evaluated in terms of mean annual 
rate/frequency of exceedance or, alternatively, return period. As outcome of seismic loss analysis, the seismic 
loss hazard curve expresses the mean annual frequency of exceeding any total annual seismic re-
pair/replacement cost.  The paper presents selective results illustrating the various steps of the PEER PBEE 
methodology as applied to the HBMC Bridge.  
 

1 INTRODUCTION 

Seismic reliability analysis of actual structures is 
a very challenging task due to the large number of 
factors affecting structural seismic demand and ca-
pacity and the uncertainties associated with these 
factors.  Uncertainties in the predicted seismic de-
mand emanate from the basic uncertainties charac-
terizing the seismic source (e.g., fault rupture 
mechanism, occurrence in space and time, magni-
tude), the wave propagation path, the local soil con-
ditions, the ground motion time histories at the sup-
port points (foundation) of the structure, the 
properties of the structure itself, and the various 
methods/models used to predict each of the above 
ingredients of the earthquake engineering problem 
from the source parameters to the seismic re-
sponse/demand of the structure.  Generally, struc-

tural capacity terms depend on cyclic material prop-
erties, geometric properties of structural members, 
system configuration and methods/models used to 
predict the capacity.  Over the last few decades, a 
significant body of research has been performed to 
develop various ingredients of a general methodol-
ogy to evaluate the seismic reliability of structures 
accounting for all pertinent sources of uncertainty 
mentioned above (e.g., Kennedy et al. 1980, 
Tzavelis and Shinozuka 1988, Esteva and Ruiz 
1989, Wen 1995, Song and Ellingwood 1999, Cor-
nell et al. 2002, Yun et al. 2002). 

The Pacific Earthquake Engineering Research 
(PEER) Center, funded by the U.S. National Science 
Foundation, has focused for a number of years on 
the development of procedures, knowledge and tools 
for a comprehensive probabilistic seismic perform-
ance assessment methodology, referred to as the 
PEER PBEE methodology, for building and bridge 



 

 

structures (Cornell and Krawinkler 2000, Porter 
2003, Moehle and Deierlein 2004). This paper pre-
sents the analysis of the Humboldt Bay Middle 
Channel (HBMC) Bridge testbed (see Fig. 1) based 
on the PEER PBEE methodology. 

The HBMC Bridge, designed in 1968 and built in 
1971, is located near Eureka in northern California.  
It is fairly representative of older AASHTO-Caltrans 
girder bridges built under the dated elastic design 
philosophy, before ductile detailing was common.  
This nine span bridge structure is 330-meter long, 
10-meter wide, and 12-meter high.  The superstruc-
ture consists of four precast prestressed concrete I-
girders and cast-in-place concrete slabs.  It is sup-
ported by two seat-type abutments and eight single 

pier bents with cap beam founded on pile group 
foundations.  The superstructure is continuous over 
Piers # 1, 2, 4, 5, 7 and 8 and has expansion joints at 
both abutments and on top of Piers # 3 and 6.  At 
these expansion joints, there are shear keys with 
gaps on both sides, while at the continuous joints, a 
shear key with # 4 dowels connects the superstruc-
ture to the pier bent. Thus, the bridge structure con-
sists of three frames interconnected through shear 
keys with gaps at the two interior expansion joints.  
Piers # 3, 4, 5, 6 and 7 are supported on five 54-inch 
diameter driven precast, prestressed concrete piles, 
while Piers # 1, 2, 8 and the abutments are founded 
on sixteen (4 rows of four) 14-inch driven precast, 
prestressed concrete square piles.  

  
Figure 1. Humboldt Bay Middle Channel Bridge (Courtesy of Caltrans): (a) aerial view, (b) superstructure 

The river channel has an average slope from the 
banks to the center of about 7 percent (4 degrees).  
The foundation soil consists mainly of dense fine-to-
medium sand (SP/SM), organic silt (OL), and stiff 
clay (OL) layers, with thin layers of loose and soft 
clay (OL/SM) located near the ground surface.  This 
site is considered vulnerable to liquefaction under 
strong ground shaking.  Soil liquefaction, approach 
fill settlement and soil lateral spreading are issues of 
interest in this bridge testbed. 

The HBMC Bridge was the object of two Cal-
trans (California Transportation Department) seismic 
retrofit efforts completed in 1995 and 2005, respec-
tively.  The objectives of the first retrofit were to 
mitigate the potential for unseating and diaphragm 
damage and to strengthen the shear keys by enlarg-
ing and reinforcing the superstructure.  The objective 
of the second retrofit was to strengthen the substruc-
ture (piers, pile caps, and pile groups) (Zhang et al. 
2007a).   

2 COMPUTATIONAL MODEL OF BRIDGE-
FOUNDATION-GROUND SYSTEM 

A two-dimensional nonlinear finite element 
model (Fig. 2) of the HBMC Bridge in its “as-built” 
condition, including the superstructure, piers, pile 
group foundations, abutments, embankment ap-
proaches, and foundation soil, was developed in the 
software framework OpenSees (Mazzoni et al. 
2005), the PEER analytical platform for seismic re-
sponse simulation of structural and/or geotechnical 
systems.  This study considers the seismic response 

of the bridge in the longitudinal direction only. 
Within each span, the four I-girders are idealized 

as a single equivalent linear elastic beam-column 
element, since due to the design of the piers, mate-
rial yielding cannot spread into the superstructure.  
Each bridge pier is modeled via a single force-
based, fiber-section beam-column element with five 
Gauss-Lobatto (G-L) points along its length.  The 
cross-sections at the five G-L points are discretized 
into fibers of confined concrete (core), unconfined 
concrete (cover) and reinforcing steel (Fig. 3).  The 
uni-axial Kent-Scott-Park constitutive model (Fig. 
4) with degraded linear unloading/reloading stiff-
ness and no tensile strength is employed to model 
the concrete material, with cf ′ = compressive 
strength, cε ′= strain at peak strength, cuf ′ = residual 
(crushing) strength, cuε ′ = strain corresponding to 

cuf ′ .  For the upper four G-L points of each pier, the 
uni-axial bilinear material model (or uni-axial J2 
plasticity model with linear kinematic hardening) is 
used to model the reinforcing steel with the parame-
ters sE = Young’s modulus, yf = yield strength, and 
b = post-yield hardening ratio.  At the base of the 
eight piers, all the longitudinal reinforcing bars are 
lap spliced.  The uni-axial tri-linear hysteretic mate-
rial model shown in Fig. 5 is used to model the rein-
forcing steel in the lap-spliced region (i.e., bottom 
G-L point).  The material properties for this hyster-
etic material model were calibrated based on the 
envelope of the lateral force-deformation (drift) re-
sponse of the bridge piers as predicted using a me-
chanics-based model of lap spliced columns, itself 
calibrated with experimental data.  Figs. 6 and 7 
show the cyclic moment-curvature response of the 
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pier fiber-sections defined at the upper four G-L 
points and at the bottom G-L point, respectively.  
Fig. 8 displays the moment-curvature response at the 
four lower G-L points of a cantilever pier subjected 

to monotonic pushover. It is seen that the plastic de-
formations (with softening) concentrate at the base 
G-L point, while the other G-L points undergo 
quasi-elastic loading and elastic unloading. 
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Figure 2. OpenSees finite element model  of HBMC bridge-foundation-ground system 
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Figure 3. Fiber discretization of pier cross-section Figure 4. Uni-axial cyclic Kent-Park-Scott concrete model 
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Figure 5. Uni-axial hysteretic model for reinforcing steel in 
the lap spliced region 

Figure 6. Cyclic moment-curvature response of fiber-
section at four upper G-L points of pier elements 

−0.04 −0.02 0 0.02 0.04
−8

−4

0

4

8

Curvature [1/m]

M
om

en
t [

10
3  k

N
−

m
]

Axial load contribution 

Rebars contribution 

 
0 0.02 0.04 0.06

Curvature [1/m]

M
om

en
t

1st G−L Point 

2nd G−L Point 

3rd G−L Point 

4th G−L Point 

10
00

 k
N

−
m

 

 

Figure 7. Simulated cyclic base moment-curvature response 
of lap-spliced pier 

Figure 8. Moment-curvature responses at four lower G-L 
points of cantilever bridge pier subjected to pushover 
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Each out-of-plane row of piles is lumped into a 
single equivalent pile with a monolithic cross-section 
defined by the union of the cross-sections of the piles 
in that row and following Bernoulli-Euler beam the-
ory. Each lumped pile is then discretized into a num-
ber of force-based, fiber-section beam-column ele-
ments.  The pile nodes are directly connected to the 
surrounding soil nodes in the translational degrees of 
freedom.  Thus, the effects of slippage and friction 
between soil and piles and/or pile-soil separation 
(gapping) near the ground surface are not accounted 
for in this study.  Pile caps are also modeled using 
force-based, fiber-section beam-column elements.   

At the abutment (expansion) joints, interior ex-
pansion joints and continuous joints, the superstruc-
ture is connected to the abutments and pier bents 

through shear keys in the longitudinal direction.  Fig. 
9 illustrates the FE modeling of an interior expansion 
joint.  The shear keys are modeled using zero-length 
elements with an aggregated uni-axial material 
model composed of an “elastoplastic material model 
with gap”, an “elastoplastic material model with 
hook” and another elastoplastic material model, all 
configured in parallel.  The purpose of the last elas-
toplastic material model is to represent the friction 
between the superstructure and the bridge pier.  In 
order to simulate the physical fracture of shear keys, 
an ultimate deformation is specified for each shear 
key aggregated material model so that its internal 
force drops to zero when this deformation is reached 
and remains zero thereafter.  Fig. 10 shows a typical 
cyclic force-deformation response of a shear key.  
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Figure 9. Shear key at interior expansion joints: (a) as built, and (b) FE model 
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Figure 10. Typical cyclic force-deformation response of 
shear keys 
The soil domain is assumed under plane strain 

condition.  It extends 1050m in length and 220m in 
depth, at which level bedrock is encountered.  The 
abutment fill is modeled as dry material, while the 
other soil layers, which are below the water table 

(near the ground surface), are modeled as saturated 
materials.  The soil domain is spatially discretized 
using four-noded, bilinear, isoparametric elements 
with four integration points each.  The materials in 
the various soil layers are modeled using pressure 
dependent (e.g., sand) or pressure independent (e.g., 
clay) effective-stress multi-yield-surface plasticity 
models, see Fig. 11. To simulate undrained response 
in saturated soil layers, the above material models of 
solid phase are embedded in a linear elastic material 
model with high bulk modulus to model the fluid 
phase.  The most significant soil material parameters 
are the friction angle, cohesion, and initial (low 
strain) shear modulus.  Fig. 12 shows a comparison 
of the shear wave velocity profile measured (0.25 
mile north-west of the west abutment of the HBMC 
Bridge) and represented by the FE model.

  
Figure 11. Multi-yield surface soil plasticity models: (a) clay type soils (pressure-independent), (b) sand type soils (pressure-
dependent) 

The bedrock underlying the computational 
nonlinear soil domain is modeled as a homogeneous, 

linear elastic, undamped semi-infinite half-space.  
The incoming seismic waves in the bedrock are as-
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sumed to be vertically propagating shear waves.  
Lysmer-type absorbing (transmitting) boundaries are 
incorporated in the FE model so as to avoid spurious 
wave reflections along the boundaries of the compu-
tational soil domain.  
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Figure 12. Shear wave velocity profile 

Consistent with the above assumptions, the seismic 
input is defined as equivalent nodal forces, which 
are proportional to the (soil particle) velocity of the 
incident seismic wave, applied in the horizontal di-
rection along the base of the computational soil do-
main.  Seismic inputs, however, are usually ex-
pressed in terms of accelerograms recorded at the 
free-field ground surface.  Consequently, the free-
field motion considered needs to be deconvolved in 
order to obtain the corresponding incident wave mo-
tion at the base of the computational soil domain.  In 
this study, SHAKE91 (Idriss and Sun 1993) was 

used to deconvolve iteratively the free field surface 
motions to the base of the computational soil domain 
through the various soil layers modeled with equiva-
lent linear soil properties.  The latter are obtained 
based on the effective shear strain in each layer and 
the shear modulus reduction and damping curves.  

 To simulate the seismic response of the FE model 
of the HBMC Bridge described above, a five-stage 
analysis procedure is used in order to apply the grav-
ity loads to the soil first, then to the bridge, and then 
apply the seismic excitation, with change of material 
constitutive model and boundary conditions of the 
soil domain between stages.  For further details on 
the FE model described above, the interested reader 
is referred to (Zhang et al. 2007a).   

Based on small amplitude vibration analysis of 
the above FE model of the HBMC bridge-
foundation-ground system, the natural frequencies of 
the two lowest system vibration modes with partici-
pation from both the soil and the bridge structure are 
found to be:  TI = 0.71sec and TII = 0.59sec.  

Figs. 13-16 present some selective simulation re-
sults obtained from the FE model presented above 
when subjected to the fault-parallel component of the 
1985 Valparaiso, Chile earthquake recorded at Pichi-
lemu station scaled to match the 5% damped elastic 
spectral acceleration at TI = 0.71sec  corresponding 
to a probability of exceedance of 2% in 50 years (re-
turn period = 2,475 years). 
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Figure 13. Shear stress vs. shear strain response at soil lo-
cation C (see Fig. 2).  

Figure 14. Moment-curvature response at the base cross-
section of Pier # 3 
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Figure 15. Total horizontal displacement histories of all 
pier bases 

Figure 16. Total horizontal displacement histories of all 
pier tops 



 

 

 
Figure 17. Deformed FE mesh at the end of the earthquake (exaggerated scale) 

Fig. 13 shows the shear stress vs. shear strain hys-
teretic response in the soil at location C (see Fig. 2) 
where the soil reaches liquefaction during the earth-
quake, resulting in dramatic stiffness degradation 
and strength deterioration.  As can be seen from Fig. 
14 which shows the moment-curvature response at 
the base cross-section of Pier # 3, the lap-spliced 
failure mechanism is fully developed during the 
earthquake.  The total horizontal displacement re-
sponse histories of the top and base of all eight 
bridge piers are shown if Figs. 15 and 16, respec-
tively.  After a shear key failure at the right expan-
sion joint, the right frame of the bridge  undergoes 
significant horizontal displacement relative to the 
other two frames still closely connected (see Fig. 
15).  From Fig. 16, it is observed that the base of 
each pier moves progressively and permanently to-
wards the center of the river channel due to soil lat-
eral spreading induced by reduction in soil strength 
caused by build-up of pore water pressure in cohe-
sionless soil layers during the earthquake.  The de-
formed FE mesh of the BFG system at the end of the 
earthquake is displayed in Fig. 17 in exaggerated 
scale.  Severe damage to bridges caused by similar 
pattern of lateral spreading has been observed in pre-

vious earthquakes (e.g., Kramer 1996, Figures 1.8 
and 1.9).  According to these simulation results, the 
seismic response of the bridge in its longitudinal di-
rection is mostly driven by the nonlinear inelastic re-
sponse of the underlying soil.  The presence of the 
bridge structure was found to have little influence on 
the seismic response of the foundation soil.  The 
plastic soil deformations impose large residual de-
formations and internal forces on the bridge structure 
after the earthquake.   

3 FAILURE MECHANISMS, LIMIT-STATES 
AND ASSOCIATED ENGINEERING 
DEMAND PARAMETERS 

Preliminary analyses and seismic response simu-
lations revealed that pier flexural failure at the base  
(in the spliced region), unconfined shear key failure, 
and unseating at the abutments and interior expan-
sion joints are the critical failure mechanisms for the 
HBMC Bridge.  Each of these failure mechanisms 
has been observed in previous earthquakes as shown 
in Fig. 18. 

 

(a) 
 

(b)  

 

(c)

Figure 18. Critical bridge failure mechanisms observed in past earthquakes: (a) pier flexural failure in spliced region, 
(b) unconfined shear key failure, (c) unseating 

For each of the three failure mechanisms consid-
ered, five discrete stages of formation of the mecha-
nism, called limit-states (LSs), are considered.  
These performance-based limit-states are defined as 
follows (Hose and Seible 1999): I - cracking, II - 
yielding, III - formation (initiation) of the mecha-
nism (when peak capacity is reached), IV - full for-
mation of mechanism, and V - strength degradation 
(collapse).  The selection of these five limit-states by 

Hose and Seible was based on field investigations 
following seismic events, detailed assessment of 
laboratory experiments and comprehensive analyses.  
These five limit-states relate explicitly to the compo-
nent/structure capacity.   
Pier Flexural Failure Mechanism.  Fig. 19 illus-
trates the five limit-states of a pier failing in flexure 
in the lap-spliced region (Hose and Seible 1999).  
The peak lateral (or tangential) pier drift Δ, defined 
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as the relative top-to-bottom horizontal displacement 
of the pier, minus the horizontal displacement at the 
top due to a rigid body rotation equal to the rotation 
of the base, is selected as the Engineering Demand 
Parameter (EDP) for pier flexural failure in the lap-
spliced region.  The five limit-states for the pier 
flexural failure mechanism are marked in Fig. 20 
which represents the analytically predicted base 
shear versus lateral drift response of a typical pier 
(average height of 12m) of the HBMC Bridge.  It 

was found that within the range of the varying pier 
axial load ratio as determined by the earthquake re-
sponse simulations, limit-states III, IV and V occur 
at very close lateral drift values, indicating the brittle 
nature of this failure mechanism for the HBMC 
Bridge.  Thus, only two limit-states are considered 
for this failure mechanism, namely limit-state II 
(yielding) and the joint limit-state III-IV-V (peak ca-
pacity and abrupt significant loss of flexural capac-
ity). 

  
(a) Limit-state I (b) Limit-state II (c) Limit-state III (d) Limit-state IV (e) Limit-state V 

Figure 19. Pictorial description of limit-states of pier flexural failure in the lap-spliced region (Hose and Seible 1999) 
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Figure 20. Limit-states for pier flexural failure mecha-
nism 

Shear Key Failure Mechanism.  Simplified mecha-
nistic capacity models (e.g., strut-and-tie model, 
Megally et al. 2001) predict that the (longitudinal) 
shear keys of the HBMC Bridge are also character-
ized by a brittle behavior, due to their low amount of 
steel reinforcement as well as the short anchorage 
length of the rebars specified in the “as built” draw-
ings.  For the shear key failure mechanism, the peak 
deformation across the weaker shear key in each pair 
is selected as an EDP.  Simplified analytical predic-
tions indicate that the limit-states I, II, and III for 
this failure mechanism fall within a very small de-
formation range.  Therefore the five limit-states are 
reduced to joint LS-I-II-III, LS-IV and LS-V.   
Superstructure Unseating Failure Mechanism.  In 
the “as built” configuration of the HBMC Bridge, 
the bridge structure is separated into three frames by 
the interior expansion joints.  Adjacent frames are 
connected only through shear keys at the expansion 
joints.  As revealed by quasi-static push-over and 
dynamic analyses of the bridge, shear keys are very 
likely to yield and even rupture in the event of a 
strong earthquake.  Unseating might occur at the 
abutment and interior expansion joints after the 
shear keys at these joints rupture and the relative 

displacement in the longitudinal direction between 
the bridge superstructure and its supports exceeds the 
corresponding seat width.  For the unseating failure 
mechanism, only LS-V (collapse) is considered and 
the associated EDP, referred to hereafter as unseat-
ing displacement, is defined as the peak horizontal 
displacement of the superstructure away from its 
supports at both abutments and interior expansion 
joints.   

In order to evaluate the seismic performance of 
the bridge system, the following system-level EDPs 
are defined for the three failure mechanisms consid-
ered: maximum peak lateral drift over all bridge 
piers ( PΔ ), maximum peak shear key deformation at 
the abutments ( SK

abutΔ ), interior expansion joints ( SK
expΔ ) 

and continuous joints ( SK
contΔ ), maximum peak unseat-

ing displacement at the abutments ( UNS
abutΔ ) and at the 

interior expansion joints ( UNS
expΔ ).  These system-level 

EDPs are used in the subsequent analysis to calculate 
the Mean Annual Rate (MAR) of the most critical 
component among a sub-group of similar compo-
nents (e.g., piers, abutment shear keys, expansion 
joint shear keys, continuous joint shear keys, super-
structure spans at the abutments and at the interior 
expansion joints) exceeding a specified limit-state 
for each of the three failure modes considered (i.e., 
pier lap-spliced flexural failure, shear key failure, 
superstructure unseating).  Thus, each computed 
MAR of limit-state exceedance denotes the MAR 
that at least one of the components of a subgroup of 
similar components will exceed the specified limit-
state for a given failure mode.   

The PEER PBEE methodology breaks down the 
formidable task of predicting probabilistically the fu-
ture seismic performance of a structure into four ana-
lytical steps (sub-tasks) integrated (coupled) using 
the Total Probability Theorem (TPT) (Ang and Tang 
2007).  These sub-tasks are: (1) probabilistic seismic 
hazard analysis, (2) probabilistic seismic demand 



 

 

analysis, (3) probabilistic capacity analysis (fragility 
analysis), and (4) probabilistic loss analysis.  Appli-
cation of these four sub-tasks to the HBMC Bridge 
testbed are presented inn the Sections below. 

4 PROBABILISTIC SEISMIC HAZARD 
ANALYSIS (PSHA) 

In order to derive an expression for the MAR of 
exceeding a limit-state or any particular value of a 
specified decision variable, it is necessary to define 
an earthquake random occurrence model in time.  
The homogeneous Poisson process is a reasonable 
model for this purpose (Cornell 1968).  Let N(t) 
denote the random number of earthquakes (of all 
magnitudes) that will occur in the next t  years.  Ac-
cording to the Poisson model, given the MAR ν  of 
occurrence of earthquakes (of all sizes), the prob-
ability that n earthquakes, ( ){ }N t n= , with random 
magnitudes and source-to-site distance will occur in 
t years is given by 

( ) ( ) ( ) ( )exp
,       0,1,2,

!

n

N t
t t

P n t n
n

ν ν−
= = …  (1) 

The Poisson process has an important property: if a 
random selection is made from a Poisson process 
with mean rate λ  such that each occurrence is se-
lected with probability p, independently of the oth-
ers, the resulting process is also a Poisson process, 
called Censored Poisson process, with a mean rate 
pλ  (Benjamin and Cornell 1970).  In this study, the 

objective of PSHA is to compute for the HBMC 
Bridge site the annual probability of exceeding any 
particular value of a specified ground motion inten-
sity measure (IM) taken as the 5% damped elastic 
spectral acceleration at the first (low amplitude vi-
bration) period, Sa(TI = 0.71sec, ξ = 5%), of the 
computational model of the bridge-foundation-
ground system.  For a given site, PSHA integrates 
the contributions of all possible seismic sources to 
calculate the MAR ( )IM imν  of Poisson random 
events {IM > im} according to the TPT as 

( )

( ) ( )
1

,
flt

i i

i i

N

IM i i i
i R M

M R

im P IM im M m R r

f m f r dm dr

ν ν
=

⎡ ⎤= > = = ⋅⎣ ⎦∑ ∫ ∫  (2) 

where fltN = number of causative faults; iν = MAR of 
occurrences of earthquakes on fault (or seismic 
source) i.  The functions ( )

iMf m  and ( )
iRf r  denote 

the probability density functions (PDF) of the magni-
tude (Mi) and source-to-site distance (Ri), respec-
tively, given the occurrence of an earthquake on fault 
i.   The conditional probability P[IM > im | Mi = m, 
Ri = r] in Eq. (2), referred to as attenuation relation-
ship (predictive relationship of IM given seismologi-
cal variables M and R), is typically developed by ap-
plying statistical regression analyses to data either 
recorded or derived from recordings (Abrahamson 
and Silva 1997, Campbell 1997).  For a censored 
Poisson process, MAR or Annual Probability are re-
lated through Eq. (1). 
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Figure 21. Uniform hazard spectra for HBMC Bridge site Figure 22. Seismic hazard curves of HBMC Bridge site 

Uniform hazard spectra for the site (see Fig. 21) 
were obtained from the USGS probabilistic seismic 
hazard maps for rock site condition (NEHRP site 
category B/C). These spectra were then modified to 
include near-fault rupture directivity effects. Soil site 
spectra were generated from the rock site spectra by 
using empirical soil-to-rock spectrum ratio (Abra-
hamson and Silva 1997).  Three seismic hazard lev-
els were selected, defined by 50%, 10%, and 2% 
probability of exceedance in 50 years (with a return 
period of 73, 475 and 2475 years, respectively).  
These seismic hazard levels are also referred to in 

the literature (e.g., seismic codes) as the Serviceabil-
ity Earthquake (or Moderate Event), Design Earth-
quake (or Design Event), and Maximum Earthquake 
(or Maximum Credible Earthquake), respectively 
(ATC-40 1996).  The seismic hazard curves (in 
terms of annual probability of exceedance) for soil 
and rock site conditions are approximated by fitting a 
Gumbel probability distribution to the spectral accel-
eration Sa(TI = 0.71sec, ξ = 5%) at the three seismic 
hazard levels defined above, see Fig. 22 (Zhang et al. 
2007).  The seismic hazard curves account for the 
randomness/uncertainty in (1) the temporal and spa-
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tial occurrences of earthquakes, (2) the magnitude 
and source-to-site distance, and (3) the attenuation of 
the ground motion intensity with magnitude and dis-
tance. 
Ensembles of Ground Motion Time Histories.  A 
total of 51 ground motion time histories were se-
lected by Somerville and Collins (2002) to satisfy to 
the extent possible (1) the dominant magnitude and 
distance combinations indicated by the M-R deag-
gregation of the seismic hazard at the three hazard 
levels considered, and (2) the local geological and 
seismological conditions (e.g., fault mechanism, 
near fault effects).  At the “50% in 50 years” hazard 
level, the 22 recordings (17 soil records and 5 rock 
records) are from earthquakes in the Cape Mendo-
cino, California region.  At the “10% in 50 years” 
hazard level, the recordings (15 soil records and 4 
rock records) are from diverse earthquakes: two 
from the 1992 Cape Mendocino earthquake, two 
from the 1978 Tabas, Iran earthquake, and the re-
maining fifteen from the 1999 Chi-Chi, Taiwan 
earthquake.  At the “2% in 50 years” hazard level, 
the 10 recordings (2 soil records and 8 rock records) 
come from large interplate subduction earthquakes: 
the 1985 Valparaiso, Chile, and Michoacan, Mexico 
earthquakes. Each selected ground motion time his-
tory is scaled such that the corresponding spectral 
acceleration at TI = 0.71sec matches the uniform 
hazard spectrum at the appropriate hazard level (see 
Fig. 23).  
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Figure 23. Spectral acceleration of scaled ground 
motions at the 10% in 50 years hazard level 

5 PROBABILISTIC SEISMIC DEMAND 
HAZARD ANALYSIS (PSDHA) 

The next step is to estimate in probabilistic terms 
the seismic demand that future possible earthquake 
ground motions will impose on the structure.  The 
objective of PSDHA is to compute the MAR, 

( )EDPλ δ , of a given structural response parameter, 
called Engineering Demand Parameter (EDP) in the 
PEER PBEE framework, exceeding a specified 
threshold value δ .  The EDPs considered in this 
study to capture three critical potential failure modes 

were defined in Section 3.  EDPs depend on both 
seismic excitation and system properties Y (e.g., 
geometric, material, inertia, and damping properties).  
Past research has shown that a judiciously defined 
IM (such as spectral acceleration at the fundamental 
period of the structure) renders any EDP approxi-
mately conditionally independent, given IM, of 
earthquake magnitude (M), source-to-site distance 
(R) and any other ground motion characteristics 
(Shome et al. 1998, Luco and Cornell 2006).  Thus, 
any EDP can be expressed as 

( ) ( ), , , ,..., , , , ,I E I EEDP M R IM EDP IMε ε ε ε≈Y Y  (3) 

where Iε  = random variable representing the effect 
of record-to-record variability on the EDP, Eε  = 
random variable representing the effects of epistemic 
uncertainties (e.g., FE modeling uncertainty and sta-
tistical parameter uncertainty) in determining the 
EDP for a given ground motion input and given sys-
tem properties. The epistemic uncertainties in EDPs 
are not considered in this study.  First, the system 
properties are assumed deterministic, i.e., a determi-
nistic estimate of Y, y , was taken as the nominal 
(best estimate) values of the system properties.  The 
probability, ( ), , IP EDP IM ε δ⎡ > ⎤⎣ ⎦y , can be obtained 
using the TPT as 

( )
( ) ( )

, ,

, ,

I

I IM
IM

P EDP IM

P EDP IM IM im f im dim

ε δ

ε δ

⎡ > ⎤ =⎣ ⎦

⎡ ⎤> =⎣ ⎦∫
y

y  (4) 

where ( )IMf im  is the PDF of IM for a random earth-
quake and is related to the seismic hazard curve, 

( )IM imν , as 

( ) [ ]( ) ( )IM
IM

d P IM imd im
f im

dim dim
νν

ν
>

= =  (5) 

Substituting Eq. (5) into Eq. (4) yields the following 
MAR of occurrence of random demand events 

( ){ }, , IEDP IM ε δ>y : 

( ) ( )
( ) ( )

, ,

, ,

EDP I

I IM
IM

P EDP IM

P EDP IM IM im d im

ν δ ν ε δ

ε δ ν

= ⎡ > ⎤ =⎣ ⎦

⎡ ⎤> =⎣ ⎦∫
y

y  (6) 

Thus the demand hazard curve ( )EDPν δ  is obtained 
mathematically as the convolution of the conditional 
complementary CDF of the EDP given IM with the 
seismic hazard curve ( )IM imν .  In Eq. (6), the prob-
ability distribution ( ), , IP EDP IM IM imε δ⎡ ⎤> =⎣ ⎦y  
expresses the effects of record-to-record random 
variability, Iε , on the EDP given IM.  The FE model 
of the BFG system (Fig. 2) is subjected to the en-
sembles of scaled ground motion records (defined in 
Section 4) to estimate the conditional probability dis-
tributions, given IM, of the EDPs selected at each of 
the three IM levels considered.  Then, these esti-
mated probability distributions at discrete IM levels 



 

 

are interpolated/extrapolated over the continuum 
range of IM values contributing appreciably to the 
MAR of limit-state exceedance.  The bridge re-
sponses to the seismic inputs derived from the soil 
free-field motions and rock free-field motions are 
treated separately.  As an illustration, Fig. 24 shows, 
together with the seismic hazard curves ( ( )IM imν ) 
for both rock and soil free-field input motions, the 
FE based simulation results (solid dots) and their fit-
ted probability distributions, given IM, for the 
maximum (over all piers) peak lateral drift, PΔ , at 
the three hazard levels considered and for the rock 
and soil free-field input motions treated separately.  
Based on empirical determination of their probabil-
ity distribution models, the EDPs PΔ , UNS

abutΔ  and 
UNS
expΔ  given IM are assumed to follow the lognormal 

distribution, i.e., 

( )
( )

ln
,   0

im
P EDP IM im

im
δ λ

δ δ
ζ

⎛ ⎞−
⎡ ⎤≤ = = Φ >⎜ ⎟⎣ ⎦ ⎜ ⎟

⎝ ⎠
 (7) 

where ( )imλ  and ( )imζ  denote the mean and stan-
dard deviation of the natural logarithm of the EDP, 
respectively.  The conditional probability distribu-
tions of the other EDPs ( SK

abutΔ , SK
expΔ  and SK

contΔ ) given 
IM are assumed to follow the hybrid lognormal dis-
tribution, truncated at the shear keys’ ultimate de-
formation capacity 100sk

u mmΔ = (4in) (Zhang et al. 
2007b).  The distribution parameters, e.g., λ  and ζ , 
are determined through least squares fitting of the as-
sumed probability distribution, e.g., Eq. (7), to the 
simulated EDPs using the FE model of the BFG sys-
tem at the three discrete hazard levels.  The distribu-
tion parameters are then approximated as continuous 
functions of im, e.g., ( )imλ  and ( )imζ  (Zhang et al. 
2007b).  In the case of a lognormal EDP, 

( )exp imλ⎡ ⎤⎣ ⎦  corresponds to the median of the EDP, 
while ( ) ( )exp im imλ ζ⎡ − ⎤⎣ ⎦  and ( ) ( )exp im imλ ζ⎡ + ⎤⎣ ⎦  
correspond to the 16- and 84-percentile of the EDP, 
respectively.  Approximations of the median value 
and 16/84-percentile of PΔ  as functions of im are 
also plotted in Fig. 24. 
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Figure 24. Probabilistic response analysis conditional on IM and 
“no collapse” 

Figure 25. Seismic demand hazard curve for PΔ  

The nonlinear response history analyses per-
formed indicate that the bridge collapses (global dy-
namic instability) in 3 out of 15 “10% in 50 years” 
soil free-field ground motions and 1 out of 8 “2% in 
50 years” rock free-field ground motions.  Thus, Eq. 
(6) needs to be modified to incorporate the possibil-
ity of collapse.  Let C denote the collapse event and 
P C IM im⎡ ⎤=⎣ ⎦  denote the conditional probability of 
collapse given IM.  This conditional probability is 
estimated, similarly to P EDP IM imδ⎡ ⎤> =⎣ ⎦ , through 
the ensembles of nonlinear time history analyses 
with rock and soil free-field input motions treated 
separately.  It can then be shown that the MAR of 
occurrence of events { }EDP δ>  becomes  

( )

,

EDP IM
IM

c c
IM

IM

P C IM d

P EDP IM C P C IM d

ν δ ν

δ ν

⎡ ⎤= +⎣ ⎦

⎡ ⎤ ⎡ ⎤> ⎣ ⎦⎣ ⎦

∫

∫
 (8) 

Using Eq. (8), seismic demand hazard curves are 
derived separately for the two sets of rock and soil 
free-field input motions.  A combined seismic de-
mand hazard curve is then obtained as the following 
“weighted average” of the demand hazard curves for 
the two sets of free-field input motions (Zhang et al. 
2007b): 

( ) ( )
( ) ( )

( )
( ) ( )

,

,

,

,

r
EDP IM Rock

r sIM

s
IM Soil

r sIM

n im
P EDP IM Rock d

n im n im

n im
P EDP IM Soil d

n im n im

ν δ δ ν

δ ν

⎡ ⎤= >⎣ ⎦ +

⎡ ⎤+ >⎣ ⎦ +

∫

∫

  (9) 
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where ( )rn im  and ( )sn im  denote the number of rock 
and soil free-field input motions, respectively, at 
hazard level im.  As an illustration, the seismic de-
mand hazard curve for PΔ  obtained from Eq. (9) is 
shown in Fig. 25.  Similarly, seismic demand hazard 
curves were obtained for the other system-level 
EDPs defined in Section 3 (Zhang et al. 2007b). 

In the PBEE framework described above, the 
variables IM and EDP (for a single limit-state) can 
be vector-valued, in which case the integrals over IM 
and EDP in the above equations become multifold.  

6 PROBABILISTIC CAPACITY ANALYSIS 
(FRAGILITY ANALYSIS) 

The objective of this third analytical step of the 
PEER PBEE methodology is to compute the mean 
rate of exceedance of a specified limit-state given 
the EDPs associated to this limit-state.  Typically, 
limit-state functions are expressed as 

( )
( )

ˆ

, , , ,
R G

I R G

g R S R EDP

g IM

ε ε

ε ε ε

= − = + − +

=

y

y
 (10) 

where ( )R̂ y  is the deterministic capacity predicted 
based on the nominal values of the system properties 
y ; and Rε  and Gε  are random variables representing 
the uncertain level of inaccuracy of the capacity 
model used (e.g., discrepancy between deterministic 
predictions based on nominal geometric and material 
parameter values and experimental measurements of 
the capacity) and the inexactness of the limit-state 
function (due to missing demand variables affecting 
the considered limit-state), respectively.  In this 
study, it is assumed that a single (scalar) EDP is as-
sociated with each limit-state of each failure mecha-
nism. 

It can be shown that the mean rate of occurrence 
of random events ( ){ }, , , 0Ig IM ε ε <y , accounting 
for the uncertainty in the inexactness of the capacity 
model and limit-state function as represented by 
random variable R Gε ε ε= + , is given by (Zhang el 
al. 2007b) 

( ){ }
( ) ( )

, , , 0

, 0

I

EDP
EDP

g IM

P g EDP d

ν ε ε

ε δ ν δ

< =

⎡ ⎤< = ⋅⎣ ⎦∫
y

y
 (11) 

The conditional probability of exceeding the limit-
state function (i.e., ( ), 0g ε <y ) given EDP δ= , 

( ), 0P g EDPε δ⎡ ⎤< =⎣ ⎦y , accounts for the uncertain-
ties in the predictive (nominal) capacity model and 
limit-state function and is referred to as fragility 
function/curve in the literature.  Thus, according to 
the above equation, the mean rate of exceedance of a 
specified limit-state is obtained mathematically as 
the convolution of the fragility curve and the seismic 
demand hazard curve,  EDPν , of the EDP used in de-
fining the limit-state function. 

The univariate probabilistic capacity models (or 
fragility curves) developed in this study to assess the 
fragility of the HBMC Bridge in regards to its most 
critical potential failure mechanisms are based on ex-
isting and newly developed deterministic predictive 
capacity models and experimental data.  For each 
limit-state considered, a set of experimental data was 
collected from previous tests. For each experimental 
specimen considered, the measured-to-predicted ca-
pacity ratio is computed. If the predictive capacity 
model were perfect and in the absence of inherent 
and modeling uncertainties and measurement 
noise/errors, these measured-to-predicted capacity 
ratios would all be unity and, therefore, the fragility 
function would take the form of a step function cen-
tered at the unit value. However, in reality, these ra-
tios exhibit a scatter due to imperfect capacity mod-
els, missing explanatory variables, and various 
sources of randomness/uncertainty. In this study, 
these ratios are approximated by the Normal distri-
bution for each limit-state of each failure mecha-
nism. Thus, the fragility curves are obtained by least-
square fitting the Normal CDF to the empirical CDF 
defined by these computed measured-to-predicted ra-
tios for each limit-state.  The uncertainty of the ca-
pacity ratio decreases with increase of the slope of 
the fragility curve, while the bias of the predictive 
capacity model is given by the ratio corresponding to 
a fragility value of 50%. If the bias is unity, then the 
predictive capacity model is unbiased.   

A refined deterministic, mechanistic model 
(Acero et al. 2006) was developed to predict the ca-
pacity of a lap-spliced pier against each of the five 
limit-states of pier flexural failure in the lap-spliced 
region.  This capacity model accounts for (1) the 
force transfer mechanism between spliced rebars, (2) 
the bond-slip degradation, (3) the length of the yield 
plateau in the stress-strain law of the spliced rein-
forcing steel, (4) the length of the spliced region, (5) 
the strain penetration of the longitudinal reinforce-
ment into the foundation (pile cap), and (6) the axial 
load ratio.  This capacity model was calibrated using 
experimental data on lap-spliced columns.  The de-
formation-based (in terms of pier lateral drift) pre-
dicted capacities have the advantage of being rather 
insensitive to the change in the axial load ratio rang-
ing from 0.9% to 7.1%  during the earthquake re-
sponse simulations performed.  Therefore, in this 
study, the predictive capacity (denominator of the 
measured-to-capacity ratio) for each limit-state is 
computed for the axial load ratio under gravity loads 
alone.  The experimental data used to develop the 
fragility curves for flexural failure of lap-spliced 
piers originate from 10 lap-spliced column speci-
mens, four of them tested at UCSD (Hose and Seible 
1999) and the remaining six tested at UCLA (Melek 
et al. 2003).  Each test specimen provides two data 
points (in the push and pull direction, respectively) 
for each limit-state.  As illustration, Fig. 26 shows 



 

 

the fragility curve for joint limit-state III-IV-V of the 
pier flexural failure mechanism together with the 20 
values of the measure-to-predicted capacity ratio 
used to fit the fragility curve.  The deformation ca-
pacities of a typical pier (average height of 12m) of 
the HBMC Bridge for LS-II and LS-III-IV-V pre-
dicted using the above-referred mechanistic model 
and the nominal geometric and material parameter 
values given in (Zhang et al. 2006a) are 84mm and 
147mm, respectively.   

For the shear key(s) failure mechanism, a predic-
tive capacity model based on the strut-and-tie ap-
proach (Megally et al. 2001) was adopted.  Experi-
mental tests for (unconfined) shear keys are scarce, 
and the fragility curves for the shear key(s) failure 

mechanism were based on the results of the follow-
ing experimental tests: 3 tests by (Megally et al. 
2001) and 2 tests by (Bozorgzadeh et al. 2004).  As 
illustration, Fig. 27 shows the fragility curve and cor-
responding measured-to-predicted capacity ratios for 
limit-state IV of shear key failure. 

For unseating of the superstructure, the predicted 
deformation capacity is taken here as the width of 
the seat (737mm/29in) at the abutments or half the 
pier width (610mm/24in) at the interior expansion 
joints.  Unfortunately, no experimental or field data 
could be found for the unseating failure mechanism 
and the fragility curve shown in Fig. 28 was defined 
based on engineering judgment.  
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Figure 26. Fragility curve for joint 
limit-state III-IV-V of pier flexural 
failure (EDP = PΔ ) 

Figure 27. Fragility curve for limit-state IV 
of shear key failure (EDP = SK

abutΔ , SK
expΔ , 

SK
contΔ ) 

Figure 28. Fragility curve for limit-state 
V of unseating failure mechanism (EDP 
= UNS

abutΔ , exp
UNSΔ ) 

7 SEISMIC RELIABILITY ANALYSIS 

For each of the three failure mechanisms and cor-
responding limit-states considered, the MAR of 
limit-state exceedance is obtained by convolving the 
appropriate fragility curve, ( ), 0P g EDPε δ⎡ ⎤< =⎣ ⎦y , 
with the demand hazard curve of the associated 
EDP, ( )EDPν δ , as expressed by Eq. (11).  The com-
puted MARs of limit-state exceedance and corre-
sponding return periods (defined as the reciprocal of 
the MARs of exceedance) are reported in Table 1 for 
all limit-states considered in this study.  

The seismic reliability assessment results ob-
tained in this study reveal that, among the potential 
limit-states considered, the most critical ones are the 
initiation (return period from 12 to 22 years) and full 
development (return period from 14 to 26 years) of 
the shear key failure mechanism, especially at the 
abutments and interior expansion joints.  However, 
the return period of the strength degradation limit-
state (LS-V) of the shear key failure mechanism is 
significantly longer (100 years at the abutment shear 
keys and 172 years at the expansion joint shear keys) 
than the return period for the lower limit-states I-II-
III and IV.  It is found that the strength degradation 
limit-state of the shear keys at the continuous joints 
is virtually impossible (computed return period of 

12,500 years).  The lap-spliced pier flexural failure 
mechanism is also critical with a return period of 29 
years for the yielding limit-state and 48 years for the 
strength degradation limit-state.  Thus, the pier flex-
ural failure mechanism is the most critical one caus-
ing an overall collapse of the bridge.  It is also ob-
served from the results in Table 1 that unseating is a 
very unlikely failure mechanism of the bridge.  This 
is most likely due to the typical deformation pattern 
(see Fig. 17) of the BFG system when subjected to 
strong seismic excitation.  Due to soil lateral spread-
ing, the superstructure of the bridge, including the 
abutments, is in an overall compressive mode, thus 
increasing the safety of the bridge against unseating. 

Overall, the seismic reliability analysis results 
given in Table 1 justify the retrofit efforts (see Sec-
tion 1) performed by Caltrans on the HBMC Bridge.   
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Table 1. Computed Mean annual rate of exceedance (Return Period) of limit-states considered 

Failure Mechanism Limit-State MAR of  
Exceedance 

Return Period 
(Years) 

II:  Yielding of reinforcement 0.034 29.4 
Flexural failure at lap-spliced piers III-IV-V:  Initiation of failure mechanism; full for-

mation of failure mechanism; strength degradation 0.021 47.6 

I-II-III:  Onset of cracking; yielding of reinforce-
ment; large open cracks and onset of concrete 
spalling 

0.080 12.5 

IV:  Cracks and spalling over the full region of the 
shear key 0.069 14.5 

Failure of shear keys at abutments 

V:  Loss of load-carrying capacity; fracture of rein-
forcement 0.010 100 

I-II-III:  same as above 0.046 22 
IV:  same as above 0.039 26 

Failure of shear keys at continuous 
joints 

V:  same as above 8.0× 10-5 12,500 
I-II-III:  same as above 0.064 15.6 
IV:  same as above 0.058 17.2 

Failure of shear keys at interior ex-
pansion joints 

V:  same as above 0.0058 172.4 
Unseating at abutments V:  Collapse 0.0011 909 
Unseating at interior expansion 
joints V:  Collapse 0.0012 833 

8 PROBABILISTIC LOSS ANALYSIS 

In the PEER PBEE methodology, the probabilis-
tic performance assessment results presented in the 
previous section can be propagated further to deci-
sion variables (DVs) that relate to casualties, cost, 
and downtime and are of great interest to stake-
holders.  The objective of probabilistic seismic loss 
analysis is to assess DVs probabilistically (e.g., 
compute the MAR of the total repair/replacement 
cost due to seismic damage exceeding a specified 
dollar amount) for a given structure at a given loca-
tion.  This study considers a single DV, namely the 
total repair/replacement cost to restore the bridge to 
its pre-earthquake state.  The probabilistic assess-
ment of this DV, which is a random variable, ac-
counts for the uncertainties in the seismic hazard at 
the site or in IM (see Section 4), in the seismic de-
mand (EDPs) (see Section 5), in the structural ca-
pacity and damage/limit-states (see Section 6), and 
in the cost associated with the repair of individual 
structural components or replacement of the entire 
bridge.  This study does not account for the uncer-
tainty/randomness in system properties.  The out-
come of the present probabilistic loss analysis is the 
seismic loss hazard curve, which expresses the MAR 
of the total repair/replacement cost exceeding any 
specified threshold value. 

In the case of global failure of the bridge, a new 
bridge will be constructed and the total repair cost is 
defined by the construction cost of the new bridge.  
In the case of “no global collapse”, it is assumed that 

all damage occurs at the component level and the to-
tal repair cost (LT) of the bridge (in a year) is equal to 
the summation of the repair costs of all components 
damaged during this year, i.e.,  

1

n

T j
j

L L
=

=∑  (12) 

where jL  is the repair cost of the jth damaged com-
ponent, and n is the number of damaged components 
(i.e., piers, shear keys, spans) in the bridge.  The re-
pair cost of a damaged component is generally asso-
ciated with a specified repair scheme, which is again 
associated with the damage state of the component.   

To overcome a number of difficulties associated 
with a multi-hazard integral approach (Conte et al. 
2007), a very efficient multilayer Monte Carlo simu-
lation (MCS) approach is used in this study to esti-
mate the seismic loss hazard curve related to TL .  
MCS can incorporate and propagate the uncertainties 
in all random variables involved in the seismic loss 
analysis, namely IM, EDPs, DMs and DVs.  The ac-
ronym DMs stands for Damage Measures, which are 
equivalent to limit-states (I, II, III, IV, V) defined 
earlier (see Section 3).  A large number of MC sam-
ples are required to obtain a sufficiently accurate 
probabilistic estimate of the seismic loss hazard 
curve.  Fig. 29 presents an overview of the multi-
layer Monte Carlo simulation approach used in this 
study.  The number of earthquakes in each year is 
simulated according to the Poisson random occur-
rence model in Eq. (1).  For each earthquake, an IM 
value is generated randomly according to its PDF de-
rived from the seismic hazard curve.  For this IM 
value, the event of collapse or no collapse is simu-



 

 

lated randomly according to the conditional prob-
ability [ ]|P C IM im=  (see Section 5). In the case of 
collapse, TL  is randomly generated from the prob-
ability distribution of the rebuilding cost and this 
single earthquake simulation is ended.  In the case of 
no collapse, a set of EDPs 
( PΔ , SK

abutΔ , SK
expΔ , SK

contΔ , UNS
abutΔ , UNS

expΔ ) must be randomly 
generated.  The needed conditional joint PDF of the 
EDPs given IM is constructed using the NATAF 
model (Nataf 1962) and the marginal probability dis-
tributions and correlation coefficients of the EDPs 

estimated from the results of the ensemble FE re-
sponse simulations performed at the three hazard 
levels and interpolated/extrapolated over the contin-
uum range of IM values.  As shown in Fig. 30, each 
and every of these EDP values is entered into its cor-
responding fragility curve to determine the probabil-
ity of each damage state of the appropriate compo-
nent as 

10 0k k

P DM k EDP

P g EDP P g EDP

δ

δ δ+

⎡ ⎤= = =⎣ ⎦
⎡ ⎤ ⎡ ⎤< = − < =⎣ ⎦ ⎣ ⎦

 (13) 
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N n=
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Collapse?

Ensemble of FE seismic response simulations 
of bridge-foundation-ground system

Fig. 29: Multilayer Monte Carlo simulation approach for probabilistic seismic loss estimation 

For each damage component, a damage state is ran-
domly generated according to the probability mass 
function defined in Eq. (13) and then a repair cost is 
generated according to its probability distribution.  
The total repair cost jL  for this single earthquake 
simulation is equal to the sum of all the simulated 
component repair costs.  This single year and single 
earthquake simulation is repeated a large number of 
times (e.g., 10,000 years with one or more earth-
quakes) to estimate the conditional complementary 
CDF of the total annual repair cost, 
[ ]| 0TP L l IM> > , given the occurrence of one or 

more earthquake(s) in the considered year.  Using 
the TPT, the probability of the total annual re-
pair/replacement cost exceeding a specified thresh-
old value,  0l > , is obtained as 
[ ] [ ]

[ ]
0 0

0 0
T T

T

P L l P L l IM P IM

P L l IM P IM

⎡ ⎤> = > = = +⎣ ⎦
⎡ ⎤> > >⎣ ⎦

 (14) 

Since the total annual repair/replacement cost is zero 
if no earthquake occurs during this year, Eq. (14) re-
duces to 

[ ] [ ]0 0T TP L l P L l IM P IM⎡ ⎤> = > > >⎣ ⎦  (15) 

The conditional probability on the RHS of Eq. (15) 
is estimated using the multilayer Monte Carlo simu-
lation approach described above.  Using the cen-
sored Poisson assumption, the probability [ ]0P IM >  
can be obtained from the seismic hazard curve as 

[ ] ( )0 1 exp 0IMP IM ν> = − ⎡− ⎤⎣ ⎦  (16) 
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Fig. 30: Conditional probability of damage state given the 
EDP 
Basic ingredients to probabilistic loss assessment 

are repair actions and probability distributions of 
their costs given the component damage states (see 
Fig. 31). In this study, this information was obtained, 
with the help of engineers from LAN Engineering in 
Irvine, California, from the two Caltrans retrofits on 
the HBMC Bridge (see Section 1) and similar work 
done on highway bridges in different districts 
throughout California.  The repair costs were calcu-
lated based on the recent empirical unit cost data 
(Caltrans 2003) and the quantities of repair work re-
quired form the HBMC Bridge.  The mean and coef-
ficient-of-variation (ratio of standard deviation over 
the mean) of component repair costs given the dam-
age state are given in Table 2.  The zero repair cost 
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for damage state II of pier flexural failure indicates 
that no repair is required in practice for this damage 
level.  The repair costs for damage states IV and V 
of shear key failure are identical because the same 
repair actions are required.  The conditional prob-
ability distributions of component repair cost given 
the damage state are all assumed normally distrib-
uted. 

 

Cost
Iμ IIμ IIIμ IVμ Vμ

I
II

III IV
V

jP L DM⎡ ⎤⎣ ⎦

IVσ Vσ
IIIσIIσ

Iσ

Cost
Iμ IIμ IIIμ IVμ Vμ
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IIIσIIσ
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Fig. 31: Conditional probability distributions of compo-
nent repair cost given the damage state 

Table 2. Statistics of component repair costs as a function of damage state 

Unit Repair Cost Failure Mechanism Damage State 

Mean c.o.v. 

II:  Yielding 0 -- 
Flexural failure at lap spliced piers 

IV:  Full development of mechanism $246,500 0.10 

III:  Initiation of mechanism $10,400 0.10 
IV:  Full development of mechanism $137,600 0.16 Failure of shear keys at abutments 

V:  Strength degradation $137.600 0.16 
III:  Initiation of mechanism $10,400 0.10 
IV:  Full development of mechanism $137,600 0.16 Failure of shear keys at continuous joints 

V:  Strength degradation $137.600 0.16 
III:  Initiation of mechanism $10,400 0.10 
IV:  Full development of mechanism $137,600 0.16 

Failure of shear keys at interior expansion 
joints 

V:  Strength degradation $137.600 0.16 

Unseating at abutments V:  Collapse $22,300 0.18 

Unseating at interior expansion joints V:  Collapse $22,300 0.18 

Collapse N/A $24,000,000 0.12 

 
The seismic loss hazard curves were computed 

using Eq. (15) for rock and soil free-field input mo-
tions considered separately.  The solid curve in Fig. 
32 is the average of the loss hazard curves for rock 
and soil free-field input motions.  According to this 
loss hazard curve, the total annual repair/replacement 
cost is very unlikely to exceed $3.6M dollars as the 
corresponding return period is about 1,000 years.   

A number of very useful information can be ob-
tained from the results of probabilistic seismic loss 
analysis using the multilayer Monte Carlo simulation 
approach presented above.  For example, Fig. 33 
shows the contributions to the expected (mean) total 
repair/replacement cost per earthquake at a specified  
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Fig. 32: Annual probability of total seismic re-
pair/replacement cost exceeding a specified threshold value

IM of the various groups of damaged components 
(piers, shear keys, spans).  It is observed that at low 
IM level (< 0.2g), the total repair/replacement cost is 
mostly contributed by shear key failures. For IM be-
tween 0.2g and 1.5g, the total repair/replacement 
cost is predominantly contributed by the shear key 



 

 

failures and pier flexural failures.  For IM above 
1.5g, the loss due to overall collapse of the bridge 
becomes increasingly dominant, and the steep slope 
of the curve representing the expected total re-
pair/replacement cost for IM between 2g and 3g is 
due to the fast increase of the conditional probability 
of collapse [ ]|P C IM in this range.  The expected to-
tal repair cost per earthquake converges asymptoti-
cally to the expected (mean) rebuilding cost ($24M 
dollars) as IM increases.  It is noticed that the un-
seating failure mechanism hardly makes any contri-
bution to the expected total repair/replacement cost 
per earthquake, because of its very low probability 
of occurrence (see Table 1) and its relatively low re-
pair cost (see Table 2). 
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Fig. 33: Contributions of different failure mechanisms to the 
expected total repair/replacement cost per earthquake at speci-
fied IM level 

 The loss hazard curve in solid line in Fig. 32 in-
corporates the effects of the uncertainties related to 
earthquake occurrences in space and time, ground 
motion intensity, ground motion time history (re-
cord-to-record variability), structural capacity, dam-
age/limit-states, and repair costs.  It is of interest to 
investigate the relative importance of these various 
sources of uncertainty in regards to the loss hazard 
results.  For this purpose, additional parametric stud-
ies were conducted.  For example, the loss hazard 
curve in dashed line in Fig. 32 was obtained by ne-
glecting the uncertainties related to structural capac-
ity and damage states (i.e., representing each fragil-
ity curve by a step function with the step located at 
the predicted/nominal capacity) and the repair costs 
at various damage states (i.e., treating repair costs 
deterministically at their mean values).  As can be 
seen, the combined effect of these two sources of 
uncertainty is small.  In another “what if” study, 
only the effect of record-to-record variability was 
removed in the loss analysis (i.e., each EDP at any 
IM level was treated as deterministic equal to its 
mean value).  The corresponding loss hazard curve 
is the dotted one shown in Fig. 32.  It is observed 
that the record-to-record variability (i.e., randomness 
in ground motion time history) has appreciable ef-
fects on the loss hazard curve.  These parametric 

studies indicate that the uncertainty related to IM 
(emanating from the uncertainties in earthquake oc-
currence in space and time, earthquake magnitude, 
site-to-source distance, wave propagation path, at-
tenuation relations) and represented in the form of a 
seismic hazard curve, is the dominant source of un-
certainty in probabilistic seismic loss analysis of the 
HBMC bridge testbed.  

9 CONCLUSIONS 

This paper presents the analysis of the Humboldt 
Bay Middle Channel (HBMC) Bridge testbed near 
Eureka in northern California using the performance-
based earthquake engineering (PBEE) methodology 
developed at the Pacific Earthquake Engineering Re-
search (PEER) Center.  This probabilistic perform-
ance assessment methodology integrates four ana-
lytical steps, namely (1) probabilistic seismic hazard 
analysis in terms of a ground motion intensity meas-
ure (IM), (2) probabilistic seismic demand analysis 
given IM, in terms of engineering demand parame-
ters (EDPs), (3) probabilistic capacity analysis (or 
fragility analysis) for various limit-states associated 
with the critical potential failure modes of the sys-
tem, and (4) probabilistic loss analysis.  The seismic 
demand analysis was performed based on a two-
dimensional nonlinear finite element model of the 
bridge-foundation-ground (BFG) system developed 
in the software framework OpenSees.  Under strong 
earthquakes, the response of the bridge is controlled 
by soil lateral spreading mechanisms associated with 
soil liquefaction.  In this study, IM was taken as the 
5% damped elastic spectral acceleration at the first 
(low amplitude vibration) period of the computa-
tional model of the BFG system. 

The basic sources of uncertainty represented in 
the PEER PBEE methodology are related to: occur-
rence of earthquakes in space and time, earthquake 
magnitude, wave propagation path/attenuation, 
ground motion intensity, ground motion time history 
(i.e., record-to-record variability), structural capac-
ity, damage/limit-states, and repair costs.  Uncer-
tainty in material and system parameters (i.e., FE 
model parameters) are not considered in this paper.  

The outcome of analytical step (1) is a seismic 
hazard curve for the site of the bridge, which ex-
presses the mean annual rate (MAR) of IM exceed-
ing any specified threshold value.  The integration of 
analytical steps (1) and (2) provides a seismic de-
mand hazard curve for each EDP, which represents 
the MAR of this EDP exceeding any specified 
threshold value.  

Three potential failure mechanisms were consid-
ered, namely flexural failure of lap-spliced piers, 
failure of shear keys, and unseating.  For each failure 
mechanism, five limit-states were defined, each as-
sociated with a single EDP.  The outcome of analyti-
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cal step (3) is a fragility function/curve for every 
limit-state of every failure mechanism considered. 
Such a fragility curve provides the conditional prob-
ability of limit-state exceedance given the associated 
EDP.  Fragility curves are developed based on pre-
dictive modeling and experimental data. 

The MAR of limit-state exceedance is obtained 
by convolving the corresponding fragility curve with 
the demand hazard curve for the EDP associated to 
this limit-state.   

In this study, probabilistic seismic loss analysis – 
analytical step (4) – was performed using a multi-
layer Monte Carlo simulation approach.  The out-
come is a seismic loss hazard curve, which expresses 
the MAR of a decision variable (typically related to 
casualties, cost, and downtime) exceeding a thresh-
old value.  The single decision variable considered 
in this study was the total annual repair/replacement 
cost of the bridge due to earthquakes. 

Investigation of the relative importance of the 
various sources of uncertainty on the seismic loss re-
sults revealed that the uncertainty related to IM (as 
represented by the seismic hazard curve) is the 
dominant source of uncertainty and that record-to-
record variability has an appreciable effect on the 
loss hazard curve. The other sources of uncertainty 
were found to have only minor effects on the loss 
hazard curve.  

In future research, it will be important to evaluate 
the robustness of the probabilistic performance as-
sessment results to the various assumptions and sim-
plifications made in applying the PEER PBEE 
methodology.   
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